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J .  Phys. A: Math.  Gen .  20 (1987) 2903-2908, Printed in the UK 

Levinson’s theorem for a fermion-monopole system 
J C Martinez 
Department of Physics, National University of Singapore,  Kent Ridge, Singapore 051 1 

ReceiLed 5 August 1986 

Abstract. We obtain an expression for Levinson’s theorem for a charged fermion moving 
in the background field of a Dirac monopole.  

1.  Introduction 

One of the gems of non-relativistic potential scattering theory is Levinson’s theorem 
(Levinson 1949) which relates, for each partial wave, the scattering phase shifts at zero 
energy to the number of bound states. The physical insights afforded by this result 
are of value in our understanding of collision theory. Surprisingly, however, it was 
many years later that its extension to Dirac particles was obtained (BarthCICmy 1967). 
Recently several versions of Levinson’s theorem were given for charged Dirac particles 
moving in a background monopole field (Grossman 1983a, b, Yamagishi 1983, Ma 
1985). The motion of a charged fermion in a monopole field is extremely interesting 
because of its novel features (for instance, the existence of a 8 vacuum and zero-energy 
bound solution). Moreover, its generalisation to non-Abelian monopoles is much in 
vogue today. Discussions of the bound states for the charged fermion-monopole 
system are of great interest in their own right (Kazama and Yang 1977). In  this paper 
we obtain a new form of Levinson’s theorem for a charged fermion in a background 
Dirac monopole field following a procedure advocated by Ma and  Ni (1985). We 
relate the phase shifts at zero momentum to the number of bound states for the lowest 
wave. Although our treatment will be similar to Ma’s (1985) ours differs from his in 
that we consider here a fermion moving in the field of a Dirac monopole for which a 
boundary condition at the origin is needed and which has a bound state depending 
on this boundary condition. In Ma’s treatment a background SU(5) monopole field 
is considered which does not require a boundary condition at the origin; moreover, 
he does not consider bound states in his discussion. 

In the discussion to follow it will be very useful to assume the existence of a 
short-range radial potential V ( r )  about the monopole. In  fact, for a grand unified 
monopole its structure u p  to about lo-’’ cm is complicated and it is only outside this 
range that the monopole magnetic field is dominant (Preskill 1984). This assumption 
might be a useful substitute for our  lack of knowledge about the monopole core. Other 
details of V will be left unspecified. 

2. Fermion-monopole system 

In this section we review some aspects of the fermion-monopole system. 
We consider only the lowest partial wave j = 141 - 4, where q = eg = 4 x integer and 

e, g are the electric and  magnetic charges. Then for a charged fermion of mass M 
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interacting with a point (Dirac) monopole the Hamiltonian is given by (Kazama et a1 
1977, Rossi 1977) 

and the wavefunction +b has the form 

J/ = - x  1 exp(-iEt) =- '( F ( r ) ' m )  exp(-iEt) 
r r G ( r ) t 7 m  

where 7, is the relevant monopole harmonic (Wu and Yang 1976). For simplicity we 
assume q > 0. V( r )  is a short-range potential; its details will be left unspecified. 

The V( r )  = 0 case has been explicitly examined by Grossman (1983a) and Yamagishi 
(1983). This case merits our consideration. As the Hamiltonian is not self-adjoint a 
boundary condition is imposed at the origin. For a recent discussion, see Roy (1985). 
If this condition is parametrised by an angle 8, i.e. 

F(O) /G(O)= i tan(iO++.ir) (3) 
we find that the scattering solutions are given by (Grossman 1983a, Yamagishi 1983) 

[ k /  .ir( E - M sin e)]  ' / ' X k , H  E > M  
(4) .ir(/El+ M sin e ) ] ' " Z k , &  E < - M  &,* = { [ k /  

where 

E > M  

E < - M .  
cos -+- cos k r -  (2" y )  - IE l+M 

Here k > 0 ,  and the superscript 0 refers to the V = O  case. An overhead bar will be 
used to designate negative-energy state quantities. 

The inner product is defined by 

and we can verify that the 4' are orthogonal: 

(*&I, cLOk,,e) = S ( E  - E ' ) .  
There is also a bound state for cos 0 < 0, namely 

K = M / C O S  e /  
(BO,, BO,)= 1. 
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Completeness is then given (where e(x) is the step function) by I dE($i:,( r’)$:.e( r ) )  +fO(-cos O)B:’(r’)B:( r )  = 6 ( r  - r’)  ( 7 )  

where in the integration we sum over positive- and  negative-energy states. Note the 
inclusion of the bound state in ( 7 ) .  We now consider the V # 0 case. 

For the Hamiltonian (1) we assume that V (  r )  vanishes beyond some distance R 
from the monopole. Outside this range the solutions are essentially those given above 
except for some phase shift. We will write these solutions in the form (for r >  R )  

(8) 
(COS a X h , e  + Sin aXk ,@+TI ) {  k / r [  E - M Sin( 6 + 2cU)]}”2 

where xk,@ and f k , e  were defined in equation (4). Again we can verify that 

E > M  i (cosfk .@+sin  a,&+,,){k/r[lEl+ M sin ( 0 + 2 ~ y ) ] > ” ~  E < - M  IClk.0.n ( r )  = 

( $ k . O , a ,  $ k . , @ . a )  = S ( E  - E ’ )  (9) 

so that q ! ~ ~ , ~ , ~  form an orthogonal set, but, as above, they d o  not in general form a 
complete set because of the possible bound states. 

From equations (4) and (8) we have, for E > M ,  

where 
k 

tan T O =  -- 
E - M  

tan 7 = -- 
E - M  

and, as above, the superscript 0 denotes the V = 0 case. The phase shift 6 relative to 
pure monopole scattering ( V = 0) may be defined by 

(12) 
For the negative-energy states we replace ( E  * M )  ’’* in equation (10) by * ( I  E I T M )  ”’ 
and the phases are given by 

6 = 7 - 70. 

tan qo  = ~ cot(;+:) 

tan f =- cot( ;+a+ .). IEl+ M 

IEI+M 
The overbars denote as usual the negative-energy quantities. At the origin the wavefunc- 
tion satisfies 

(14) F(O) /G(O)  = i t an( f8  +:T + a ) .  
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We recover the free-particle result (13) when a is zero. To obtain Levinson's theorem 
we introduce first the Green function. 

3. Levinson's theorem 

The Green function G(r ,  r'; E )  for (1) is defined by 

yo( E - H)  G( r, r'; E )  = 6 ( r  - r') 

with (here $= $'yo) 

where the sum over k is an  integration over the continuum spectrum and a sum over 
discrete states. For V=O similar results hold with $ replaced by $ O ,  H by Ho and G 
by Go. We also note that 

(16) G( r ,  r'; E )  = Go(r, r'; E ) +  dr"  Go(r,r"; E)yoVG(r" ,  r ;  E).  I 
Following Ma  and Ni (1985) we calculate the quantity 

--Im d E  drTr{y,[G(r,r; E ) - G o ( r , r ;  E ) ] )  
7T ' I S  

- Im d E  d r  dr'Tr{yoG,(r, r'; E )yoV( r ' )G( r ' ,  r ;  E ) }  ---l rr I I I 
where we have suppressed the subscripts 0, cy. Using 

v/ $k') = I d r  $",( - HO)$k' = ( E  k ' -  E k)($k'l$",* 

we find that 

--Im d E  drTr{yo[G(r,  r ;  E ) - G o ( r ,  r ;  E ) ] }  
57 'II 

= d E  - E k ' ) - S ( E  - E k ) l ( $ k ' , B . a ( ( L O k , B ) ( $ O k , B ( $ k ' . 8 , a ) .  (17 )  

When the integration range of E in (17) is from --CO to +a, the 6 cancel and the 
integral vanishes. If the integration range is from - M  to + M ,  6 ( E  - E k )  = 1 for the 
bound solution (6). Thus if cos 0 2 0 and  - M < E < M ,  we have for the right-hand 
side of (17) 



Levinson's theorem for a fermion- monopole system 2907 

where N is the number of bound states. However, if cos0 > 0 then the right-hand side 
of (17) is N - 1, instead. 

The left-hand side of (17) may be evaluated directly by making use of 

F and G are the top and bottom elements of ( l oa )  and ( lob) ,  respectively, depending 
on whether we are considering the V = 0 or V # 0 case. The end result is 

In  terms of the wavefunctions (10) the expression in braces at the left-hand side of 
(22) may be written 

[ 4 i / 2 ~ ( k k ' ) " ~ ] { ( i E l / E )  B, cos[ (k ' -k) r+; (v ' -q+v '  --v')]sin$(v'-v - v "  + v o )  
+ B - c o s [ ( k ' + k ) r + i ( v ' + v + v "  +v")]sin$(v" + v o - v ' - v ) }  

where 

B*=j{[(l E I - M ) ( /  E'l + M)]"? * [ ( I E  + M ) (  1 E'I - M ) ]  I ! ? } .  

For E < O  the appropriate overbars should be appended. 
In the limit Ek -+ E,, we have B++ k, 

s i n ~ ( ~ ' - q - v " + v " )  1 d 
-+- -(v -7') Ek - Ek 2 d E  

B- M lEl -+--- 

Eh-Ek 2k E 

and 

and cos kr+O as r + m .  
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Equation (22) reduces to 

+ sin[ i j ' (  - M )  + f j (  - M ) ]  sin[ i j " (  - M )  - f j (  - M ) ]  

N if cos O Z O  

= { N - l  if cos o < o  
which is the form Levinson's theorem takes for the system we are considering here. 

We may further simplify this result by noting that equations (1 1) and (13) imply that 

(24) 

M ) ,  etc, are either ( n  + i ) ~  or  n r  ( n  integer) 

7)(+CO) + i j (  -CO) = v"(+Cc) + f / " (  -CO) = 0 

and the zero-momentum phases 7 (  M ) ,  
depending on the sign of E. Thus we find 

cos 0 2 0  
cos o < o  

1 if 
K - 1  if 

-[ 6(  M )  + S(  - M I ]  = 
7T 

where S is defined by equation (12). 
Several remarks are in order. First, the sum of the phase shifts at E = * M  is 

independent of the sign and  strength of V. This can be understood as follows: as the 
strength of V ( r )  increases, scattering states at one energy ( + M ,  say) may turn into 
bound states while bound states may also turn into scattering states at the other ( -M) 
(Ma 1985). Second, the left-hand side of (24) carries some vestige of the 0 angle which 
is not unexpected, but which is not reflected in previous results. Finally, if we follow 
Grossman (1983b) and  interpret the derivative of the phase with respect to energy as 
a time delay, then the right-hand side of (24) (see also (23)) is just the sum of time 
delays off the negative- and  positive-energy states, and this delay is entirely attributed 
to bound states of the system. 

It would be interesting to relate the vacuum charge (Witten 1979) to the phase shifts. 
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